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Abstract. We present our results of the conceptual design and the implementation of ubiquitous computing applications using smart
identification technologies. First, we describe such technologies and their potential application areas, then give an overview of some of the
applications we have developed. Based on the experience we have gained from developing these systems, we point out design concepts that
we have found useful for structuring and implementing such applications. Building upon these concepts, we have created two frameworks
based on Jini (i.e., distributed Java objects) and Web Services to support the development of ubiquitous computing applications that make use
of smart identification technology. We describe our prototype frameworks, discuss the underlying concepts and present some lessons learned.
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1. Introduction

Object tagging is an enabling concept for many interesting
ubiquitous computing (“ubicomp”) applications [19]. By at-
taching small electronic tags to physical objects, these objects
can be automatically identified and located when brought into
the vicinity of a tag detection system. Our goal is to support
the development of applications that make use of smart iden-
tification technology by providing suitable abstractions and
concepts and by incorporating these concepts into a frame-
work. Since identification of real-world objects is the prereq-
uisite for “smart” behavior, the framework should also sup-
port basic functionality for smart objects such as associating
specific information and functionality with objects and pro-
viding an artifact memory. Furthermore, it should support
event propagation, location management, and some other ba-
sic services for smart objects.

One example of a promising object tagging technology is
passive radio frequency identification (RFID), where tags do
not need their own power source and cost only a few tens
of cents. State-of-the-art RFID systems such as the Phillips
Icode system [21] allow the simultaneous detection of a few
hundred tags within a space of up to one cubic meter. Typ-
ically, such tags not only hold a unique ID, but also provide
a small amount of non-volatile read/write memory of up to
about 100 bytes.

Besides passive RFID systems, other identification sys-
tems also exist. Bar codes are a classical technology for tag-
ging physical objects, but they need line-of-sight to the reader
and have other drawbacks that make them less attractive for
ubicomp applications. In contrast to passive RFID systems,
active RFID systems have built-in batteries enabling them to

∗ Corresponding author.
E-mail: roemer@inf.ethz.ch

transmit their data over distances of up to 100 m. Disadvan-
tages are their larger size and the higher price compared with
passive systems. In the future, we also envisage small mod-
ules based on RF technologies similar to Bluetooth, WLAN
or UMTS for tagging physical objects. Their main advan-
tage is that they can cover a larger area and provide additional
functionality such as transmitting sensor values. Currently,
however, they have disadvantages with respect to size, price,
and energy consumption that are similar to those of active
RFID systems.

Despite their simplicity and current limitations, such pas-
sive RFID-based identification systems enable the implemen-
tation of a wide range of novel ubicomp applications by
bridging the gap between the physical world (i.e., tagged
real-world objects) and the virtual world (i.e., application
software or service infrastructure). One example is tagged
products (“smart products”) that make new services and new
cost-saving business processes possible. They bring benefits
in the areas of source verification, counterfeit protection, one-
to-one marketing, maintenance and repair, theft and shrink-
age, recall actions, safety and liability, disposal and recycling
as well as mass customizing [3]. Smart objects thus lead to
more effective supply chain management systems, product
life cycle management processes, and customer relationship
management processes in the consumer goods industry [7].
However, the use of novel identification technologies is not
limited to these classical business processes – many new and
innovative applications are possible when real-world objects
become “smart” by having information attached to them and
being directly associated to backend IT systems or linked to
services on the Internet.

Over the last three years we have developed a number
of identification-based applications in areas such as smart
games, home automation, and office automation. These appli-
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cations are typically based on non-trivial interactions between
multiple tagged objects. We have found that existing ubicomp
infrastructures such as Savant [12], Cooltown [8], one.world
[5], Gaia OS [13], and Stanford Interactive Workspaces [6]
do not provide appropriate application level frameworks to
substantially support the implementation of our applications.
Although these infrastructures provide useful programming
primitives, there is quite a large gap between these primitives
and the necessary functionality of ubicomp applications based
on the smart identification technologies that we have in mind.

In order to better understand the requirements of smart
identification-based ubicomp applications and to proceed to-
wards an application model, we first implemented from
scratch a set of different prototype applications as presented in
section 2. The only piece of software they had in common was
the driver software for the RFID system. Based on our experi-
ence with these applications, we identified a number of tasks
common to this type of application, which led to an applica-
tion model and the design of concepts that we found useful for
structuring and implementing applications using tagged phys-
ical objects. Based on those mechanisms, we then designed
and implemented two application-level frameworks to sup-
port the development of tag-based ubicomp applications. The
implementation of two different application-level frameworks
enabled us to evaluate slightly different design decisions, and
to compare implementations based on different programming
platforms such as Sun’s Jini, on the one hand, and Microsoft’s
.Net Web Services, on the other hand.

In the next section we first present a short overview of
some of the applications we have developed. They will serve
as a basis for identifying the general design concepts that we
present in section 3. These concepts should form the basis
of a generic ubicomp framework. After a description of our
two prototype frameworks in section 4, we compare and eval-
uate some of the underlying ideas and draw conclusions for a
more elaborate implementation of our concepts in section 5.
We conclude by mentioning related work and giving a short
outlook. The focus of the paper lies in concepts and suitable
application frameworks, since these should serve as a basis
for future systems of cooperating smart real-world objects.

2. Selected ubicomp applications

We outline below the type of applications we intend to sup-
port with our framework by sketching some of the prototyp-
ical smart identification-based ubicomp applications we have
developed over recent years. Note that all the applications are
based on multiple interacting tagged physical objects.

Smart Tool Box. Tools are equipped with RFID tags, and
the tool box contains a mobile RFID system (including a tag
reader antenna integrated into the tool box) [9]. The tool box
issues a warning for safety reasons if a worker attempts to
leave the building site (or a sensitive maintenance area such
as an airplane) while any tools are missing from his or her
box. The box also monitors how often and for how long tools

Figure 1. Screenshot of the Smart Tool Box application.

have been in use. Based on this information, tools can be
replaced before they wear out. Additionally, the tool owner
can charge for tool rental based on actual tool usage. Figure 1
shows a screenshot of this application.

Smart Supply Chain. Smart identification technology can
significantly improve the efficiency of supply chains and the
internal logistics processes of companies [7]. In such scenar-
ios, the automatic identification and localization of goods at
instance level can help to prevent faulty deliveries and speed
up the whole business process. In our demo application, we
simulate a small supply chain. It consists of two companies
that bottle mineral water, one retail store, two freight compa-
nies, and one mineral water wholesaler. The retail store can
send orders to the wholesaler, and the wholesaler can send
orders to its two bottlers. The contractor of an order is re-
sponsible for having a freight company deliver the goods to
the orderer. Every bottle of mineral water, the box contain-
ing the bottles, and the container for the boxes are tagged.
RFID readers are installed at nine focal points along the sup-
ply chain to check whether the correct quantity of goods and
the correct product instances have passed a particular focal
point. If something goes wrong, a warning message is is-
sued to the warehouse management system, which can decide
on further action. Besides the tracking of goods, the bottles
also monitor the temperature at every location and issue an
alarm message if the current temperature exceeds a prede-
fined temperature range. In addition, locations and objects
can be queried for statistical information as a basis for future
optimization of the whole supply chain.

RFID Chef. In this application [10], grocery items are
equipped with RFID tags (instead of the bar codes that are
commonly used today). When placed on a kitchen counter
with an integrated RFID reader, a nearby display suggests
dishes that could be prepared with the grocery items avail-
able, or shows missing ingredients. The suggested dishes not
only depend on the available ingredients, but also on the pref-
erences of the cook, who might, for example, prefer vegetar-
ian or Asian dishes. To implement this functionality, the cook
is identified by an RFID tag with the form factor of a credit
card, carried in his or her wallet.
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Smart Playing Cards. Ordinary playing cards are equipped
with RFID tags. An RFID antenna mounted beneath a table
monitors the players’ game moves. A nearby display shows
the score and the winner, and it raises a cheat alarm if any of
the players do not follow suit. It also gives hints to beginners
by assessing the players’ moves and sending the hints to the
player’s PDA. This is implemented by having each card re-
member the context in which it has been played and whether
the trick in question was won or lost. [14] contains a detailed
description of the system.

3. Design concepts

The above-mentioned applications were initially developed
from scratch. From these initial practical experiences, we
identified common issues concerning the applications and
came up with some general design concepts. In the follow-
ing, we introduce the abstractions and design concepts we
found. The subsequent section then shows how some of these
abstractions and design concepts were incorporated into our
application level frameworks.

Location. The notion of location is a central concept for
most of the applications. In general, location can be based
on geographic information such as coordinates, or on more
abstract symbolic information, such as room numbers. A tag-
ging system can provide both kinds of information. If the
geographic position of the tag reader is known, the location
of the tagged objects can be estimated. This information is
useful in the Smart Supply Chain application, for example,
where the distance between two distribution centers is rele-
vant for the transportation of goods. The symbolic location
information is normally determined by the tag reader and its
detection range. In the Smart Tool Box application, all the
tools within the range of the tool box antenna are supposed to
belong in the same tool box.

Neighborhood. We use symbolic location information to ex-
plicitly support the concept of neighborhood. As in the Smart
Tool Box example, “cooperating” physical objects are often
collocated. Thus, the neighborhood concept is a relation be-
tween objects that are close to each other, making them po-
tential candidates for collaboration. Note that we advocate
a symbolic meaning of closeness that might differ from the
Euclidean distance – two objects in different corners of a
room might be closer to each other in a symbolic sense than
two objects in two different rooms separated by a wall.

Location management. The management of locations refers
to two similar but different issues. On the one hand, physical
objects can contain other physical objects (e.g., a box that
contains bottles). On the other hand, symbolic locations are
usually ordered in a hierarchical way (e.g., a room is part of a
building). Both concepts can be combined (e.g., a bottle is in
a box, the box is located in a particular warehouse).

Location management should also consider two other as-
pects. One refers to the dynamic behavior of the containment

relationship as in the Smart Tool Box example where tools are
frequently put into and taken out of the tool box. The other as-
pect refers to the evolution of location hierarchies over time.
The warehouse in the Smart Supply Chain example may be
reorganized so that the location hierarchy needs to be adapted.

Time. Some of the applications require a notion of time. The
Smart Tool Box, for example, has to determine the amount of
real time that has elapsed between removing a tool from the
box and replacing it. The Smart Playing Cards application
knows which player played which card by means of the tem-
poral order of the cards played. In general, there is a need to
time-stamp such events. In the case of multiple tag readers,
the time stamps of events originating from different readers
should be comparable, even if some of the readers have been
offline during event generation.

Composition. Physical objects are often an aggregation of
other physical objects (e.g., a truck that transports bottles
consists of thousands of different parts which might all be
tagged). Many applications are only interested in manipulat-
ing a composite object in order to perform a certain manipula-
tion on all the objects contained within that composite object
(e.g., it is highly inefficient to communicate with all tagged
parts of a truck if the new location of the whole truck needs to
be set). In order to support such situations, it is necessary to
explicitly model “part of” relationships between objects. This
relationship can also be used to inherit properties. For exam-
ple, it is not necessary that each part of a truck stores the same
location information. If a part needs to know its location, it
can ask its parent node in the hierarchy.

Note that composition is different from the neighborhood
concept since neighboring objects do not necessarily belong
to the same composite object. This concept also differs from
the containment relationship. The containment relationship
has to consider dynamic aspects in terms of the insertion and
removal of objects, whereas the composition concept is more
static. Objects in such a relationship depend on each other
and cannot easily be inserted or removed without changing
the nature or functionality of the objects (e.g., we can take
objects out of a cupboard without changing the properties of
the cupboard, but if we take the door off the cupboard, the
cupboard becomes a shelf).

Linkage of the physical and virtual world. In order to en-
able a software application to react to actions in the physical
world, a link has to be established between tagged physical
objects in the real world and the application. Since RFID
systems detect the presence and absence of tags in a certain
physical space, this link can be established by notifying the
applications of tags entering and leaving the space. A natural
way to model these notifications is by means of an event noti-
fication system. The system has to support at least two basic
events, enter(X) and leave(X), which are sent to the
application when a tag with identity X enters and leaves the
detection range of the detection system, respectively. Addi-
tionally, applications need a way of expressing their interest
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in a subset of all possible tags, since a single RFID reader
might be used simultaneously by multiple applications. Note
that the tag detection system and the application may run on
different systems and platforms, as, for example, in the Smart
Tool Box application, which consists of a mobile tag detec-
tion system in the tool box cooperating with a fixed system
located in the workshop, which runs the backend part of the
application.

Although from an abstract point of view the tag detection
system detects entering and leaving tags, matters are com-
plicated by the actual low-level interface provided by the tag
detection system and certain application requirements. The
Icode RFID system [21], for example, periodically scans (typ-
ically at sub-second intervals) for present tags by sending a
short RF pulse and waiting for answers from the tags. When
receiving the pulse, a tag waits a random number of discrete
time slots before answering in order to avoid time-consuming
collisions with other tags transmitting concurrently. The max-
imum number of time slots N which a tag may wait before
answering influences both the time needed for a single scan
and the expected number of collisions. A small N results in
fast scans (down to 60 ms according to [18]) but many colli-
sions, whereas a large N results in slow scans (more than one
second) but few collisions. The best value for N depends on
the actual number of tags present. Since this number is typ-
ically unknown, non-trivial algorithms are needed to achieve
good detection performance [18].

This kind of low-level interface has several implications.
Firstly, applications are typically only interested in changes
in the detected set of tags, that is, they want to receive en-
ter and leave event notifications. So an appropriate software
component has to convert scan results to event notifications.
However, this component’s task is non-trivial, since the scan
results are typically imperfect due to tag collisions, that is,
not all tags are detected in every scan. This can result in event
flickering – the rapid generation of alternating leave and en-
ter events for a tag that is in fact present all the time. Filters
that cancel out spurious leave/enter events are required in the
event of such imperfect tag detection.

Secondly, many applications require that objects be de-
tected as quickly as possible. This is necessary if tags stay in
the detection range for only a fairly short period of time. Even
if the tags stay long enough, long delays in tag detection can
cause problems with human–computer interaction. The Smart
Playing Cards application exemplifies this, because the user
expects an immediate reaction from the system when placing
a card on the table.

History. Some applications not only react immediately to
tagged objects entering and leaving the reading range, but
subsequently also query objects on their history. Consider
the Smart Tool Box example, where tools can be queried re-
garding how long they were used in which tool box on which
building site. Therefore, a generic mechanism for logging and
querying the history of physical objects would seem appropri-
ate.

Context. Typically the application’s action when a tag enters
or leaves the reader’s range depends not only on the identity
of the tag, but also on the context such as the earlier presence
or absence of other tags. Consider, for example, the RFID
Chef application: the dishes that have to be displayed when
a new grocery item is placed on the kitchen counter not only
depend on the grocery item itself, but also on the cook. In
the Smart Playing Cards application, the action taken when a
playing card enters or leaves the antenna’s range depends on
the other playing cards currently lying on the table.

Often applications are only interested in events within a
certain context. Consider again the Smart Playing Cards ex-
ample where, for a game like whist, the application only
wants to be informed when the last of four players has played
his or her card in the trick. Such a selection of events can
be performed at several levels, for example, in the applica-
tion. However, the scalability and performance of a system
can be increased by performing this selection as close as pos-
sible to the source of events. This, however, requires a way of
expressing the event contexts in which applications are inter-
ested.

State and behavior. Applications typically assign state and
behavior to physical objects. In the Smart Tool Box applica-
tion, for example, the state of a physical object (i.e., a tool)
consists of its usage pattern.

The applications also differ in the way they assign behavior
to physical objects. In the RFID Chef application, for exam-
ple, all the grocery items have a “common” behavior – dis-
playing a suitable list of dishes. In the Smart Tool Box ap-
plication, however, physical objects have a more “individual”
behavior – calculating tool usage, for example. Moreover, a
single physical object can contribute to the behavior of more
than one other physical object. In the Smart Playing Cards ap-
plication, for example, a single card contributes to the “usage
context” of all the other playing cards on the table. A flexible
mechanism is therefore needed for assigning state and behav-
ior to physical objects.

Virtual counterparts. Due to resource limitations, neither
the physical object nor the tag is able to implement all of the
above concepts. Therefore, a digital representation is needed
– the virtual counterpart of a tagged object – that can adopt
this role. An application does not directly interact with the
objects themselves, but with their virtual counterparts. In the
Smart Toolbox example, the tool usage pattern is stored in the
virtual counterpart. The tag is only used as a link to its virtual
counterpart.

Identification and address. As pointed out above, we use the
tag attached to the object as a pointer to its virtual counter-
part. This means that the tag must provide some information
on how an application can access the virtual counterpart. To
identify the corresponding counterpart, each counterpart re-
quires a unique identifier. An application also has to locate
the virtual counterpart, which may reside somewhere on the
Internet. For this purpose, a structured addressing scheme and
an underlying directory service is necessary.



www.manaraa.com

SMART IDENTIFICATION FRAMEWORKS FOR UBIQUITOUS COMPUTING APPLICATIONS 693

The identification or the address of a counterpart can be
stored on the tag. The minimum information that is needed is
a unique tag ID, which can then be mapped to the identifier
or the address of the counterpart by an appropriate service in
the infrastructure.

Life-cycle management. Life-cycle management deals with
the instantiation, migration, and destruction of virtual coun-
terparts. After a tag has been attached to a physical object,
a virtual counterpart has to be created. After a tagged object
has been destroyed, its virtual counterpart might also be de-
stroyed to save resources. However, destruction is optional,
since the virtual counterpart may exist “forever”. For perfor-
mance reasons, a virtual counterpart might also migrate to a
place where communication with its tagged object is more ef-
ficient.

Communication infrastructure. All the applications we have
developed so far make use of a communication infrastructure
to access background services, such as the virtual counterpart
of an object or an object history storage service. In environ-
ments or in scenarios where a wired Internet infrastructure
is not present, we assume a wireless connection, such as IP
over Bluetooth, WLAN, or UMTS. However, there may not
always be global connectivity, as in the case of the Smart Tool
Box application. The tool box contains a mobile RFID sys-
tem and an associated computing system, which together are
able to operate offline. The tool box is only connected to the
background communication infrastructure when it is returned
to the workshop. Such disconnected operations should also
be supported by a general application framework for RFID-
based applications.

4. Framework prototype implementations

In order to evaluate the concepts described in section 3, we
implemented two prototype systems that build on these con-
cepts. One is based on Jini (i.e., distributed Java objects),
while the other uses Web Services as the underlying plat-
form. By using these prototype systems to (re-)implement
tag-based ubicomp applications, we wanted to gain experi-
ence that would be useful for a more elaborate future imple-
mentation of a general platform for smart identification-based
applications.

4.1. Jini approach

For our first framework, we implemented the concepts out-
lined in section 3 in a Jini-based [20] infrastructure for vir-
tual counterparts (VCs). Figure 2 shows an overview of the
system architecture. RFID systems are connected to event
drivers (EDs) that generate enter and leave events from pe-
riodical tag scans. The EDs act as producers for the virtual
counterpart event service (VCES). The VCES delivers events
to the virtual counterpart manager (VCM), and to specific
counterparts. The VCM acts as an execution environment for

Figure 2. Infrastructure overview of the Jini approach.

counterparts. Upon the first sighting of a tagged object or lo-
cation, it consults the virtual counterpart repository (VCR) to
obtain counterpart executables for the tag or the specific loca-
tion. Counterparts register with the look-up service (LUS) so
that cooperating counterparts can find each other. The artifact
memory (AM) acts as a place for persistently storing and re-
trieving counterpart state and event histories. Small amounts
of state can also be stored in the tag memory by sending ap-
propriate store events to the VCES.

Event driver. The event driver maps the output of the RFID
reader to enter and leave events. As mentioned in section 3,
typical RFID readers perform scans and return a possibly in-
complete list of currently present tags. By calculating the dif-
ference between successive detection rounds, a list of enter-
ing tags and a list of leaving tags is determined. By removing
from these lists tags that leave and reenter in rapid succession,
we can avoid the event flickering mentioned above. From the
resulting tag lists, enter and leave event notifications are gen-
erated. Both enter and leave events contain a tag ID, a location
ID, and a time stamp.

Our current event driver implementation uses a so-called
RFID framework [4], which provides an abstract tag reader
interface and already implements the mechanisms outlined
above. Additionally, this framework supports a wide variety
of RFID hardware.

Virtual counterpart event service. Event producers and con-
sumers advertise and subscribe to the VCES by specifying
the types of events they want to generate or receive. Based
on this information, the VCES forwards events to interested
subscribers only. The VCES can tell producers not to produce
events if nobody is interested in them.

Subscriptions can optionally contain a rule for specifying
context events. Such a rule consists of event declarations and
an executable. The program consists of a list of condition–
action specifications. Each condition specifies an event pat-
tern using a composite event language similar to the Cam-
bridge Composite Event Language [11]. The action part emits
one or more events based on the parameters of the matched
event pattern.

Virtual counterparts. Counterparts are digital representa-
tions of real-world objects. We differentiate between two
classes of counterparts: counterparts that represent physical
objects (so-called Virtual Counterparts or VCs) and counter-
parts that represent physical locations (so-called Virtual Loca-
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Figure 3. Virtual counterparts: (1) VC, (2) VMC, (3) VL, (4) VML.

tions or VLs). Mainly for performance reasons we have intro-
duced so-called Meta Counterparts, which represent a whole
set of physical objects (so-called Virtual Meta Counterparts
or VMCs) or physical locations (so-called Virtual Meta Loca-
tions or VMLs). Since a meta counterpart manages a whole
set of physical entities, the resource overhead per physical en-
tity is much lower when using a meta-counterpart than when
using lots of ordinary counterparts. These concepts are also
illustrated in figure 3.

A VC is implemented as a Jini service with its own ex-
ecution thread. A VC can communicate with other virtual
counterparts by sending events or by invoking remote meth-
ods using Java RMI. The only difference between a VC and
a VMC is that there is a one-to-one mapping between tag IDs
and VCs, whereas there is a many-to-one mapping of tag IDs
to VMCs. A VL is the digital representation of a location
that is monitored by an RFID reader. The implementation is
the same as for the VC except for the fact that the VL also
maintains a list of VCs currently present at that location. Ad-
ditionally, a VL forwards all received events to the VCs in
that list. Similar to VMCs, VMLs represent a set of locations
(or RFID readers), such as a set of shelves in a retail store.

Virtual counterpart manager. A VCM acts as an execution
environment for the various types of virtual counterparts. It is
also responsible for counterpart instantiation, migration, and
destruction. For this purpose, the VCM monitors tagged ob-
jects by subscribing to enter and leave events.

If the VCM receives an enter event, it first consults the
look-up service for matching counterpart instances. If no
counterpart exists, the VCM consults the counterpart repos-
itory, which maps tag and location IDs to URLs. The URLs
point to Java archive (JAR) files which contain code, re-
sources, and arbitrary additional data for the respective vir-
tual counterparts. The VCM downloads this code, executes
it in a separate thread, and registers the counterpart with the
look-up service. If on the other hand the look-up service al-
ready contains matching counterpart instances executing in
a different VCM instance, the VCM asks the counterpart to
migrate to the new location. However, the counterpart may
choose to disregard this request. If the VCM receives a leave
event, it asks the respective counterpart to clean up and exit.

As with migration, the counterpart may choose to disregard
this request.

Once a counterpart is up and running, it can subscribe to
events, program the VCES for context events, use the LUS
to look-up cooperating counterparts, and store and retrieve
state information using the artifact memory. Counterparts are
Java objects that provide an event API and a set of interface
methods to the VCM. Counterparts cooperate by using events
or Java RMI.

Note that it is possible to implement abstract virtual coun-
terparts that have no physical equivalent by selecting an un-
used tag ID and manually sending enter/leave events with this
ID to the VCM.

Virtual counterpart repository. The VCR consists of two
components – a mapping facility that maps tag and loca-
tion IDs to URLs, and an HTTP server for downloading the
counterpart executables. By mapping multiple IDs to the
same URL, we can implement meta-counterparts (or meta-
locations) that correspond to multiple physical objects (or lo-
cations). Managing a whole set of similar objects (such as
playing cards) by a single meta-counterpart is more efficient
than having a distributed implementation with many commu-
nicating counterparts.

Look-up service. The LUS is somewhat similar to the VCR
in that it maps location and tag IDs to virtual counterparts.
However, in contrast to the VCR it returns pointers to exe-
cuting counterpart objects, whereas the VCR returns point-
ers to static Java code which is used to instantiate the virtual
counterparts. Again, meta-counterparts (locations) are imple-
mented by mapping multiple IDs to the same counterpart (lo-
cation). Normally, the LUS and the other Jini infrastructure
components are totally transparent to the application devel-
opers since these components are only used internally by our
framework to manage the registration of new VCs. However,
it is possible for the application developers to contact the LUS
and query it for VCs, infrastructure components such as the
VCM, or 3rd party services.

Artifact memory. The AM stores state information in the
form of attribute/value pairs and event histories. It is imple-
mented as an abstract virtual counterpart. Other virtual coun-
terparts can send predefined events (store state, retrieve state,
store event, query events) to the AM. The query event can
be used to issue queries to the AM regarding multiple events,
such as “which objects were at location X at time T ”. The
AM internally uses JDBC to open a connection to an SQL
relational database. The AM creates one table for persistent
state and one table for each event type in the database. The
persistent state table has two columns; an attribute column
and a value column. The table for a particular event type has
one column for each parameter of this event type. The entry
event table, for example, has three columns for its three at-
tributes (tagID, locationID, time stamp). The AM query lan-
guage is plain SQL, which is passed through to the database
unmodified. However, to simplify frequently used requests,
some powerful new query commands have been added:
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• find(TAG, TIME): location of TAG at TIME;

• with(TAG, TIME): returns the set of tags at the same loca-
tion as TAG at TIME;

• look(LOC, TIME): set of tags at location LOC at TIME;

• history(TAG): list of recent locations visited by TAG.

More information on the concepts and implementation of
the Jini approach can be found in [2].

4.2. Web Services approach

Another approach to implementing the concepts described in
section 3 is the use of Web Services. Web Services seem to
be appropriate for several reasons. Firstly, the client/server
paradigm is useful for modeling virtual counterparts – on the
one hand, the virtual counterpart can provide its functionality
as a service, and, on the other hand, tag-based applications
can act as clients. Secondly, Web Services also provide a
service description and discovery framework, which can be
used to describe and locate virtual counterparts. Thirdly, Web
Services build on open standards such as the Simple Object
Access Protocol (SOAP), making them universally applica-
ble. Fourthly, the framework can then easily communicate
with third-party Web Services on the Internet.

Figure 4 shows the main components of the infrastructure.
The tag detection system scans for tagged objects within its
reading range. If a tagged object is detected, the system reads
a URI from the memory of the tag. The URI consists of the
identifier and the DNS-like address of the virtual counterpart.
This URI is used by the tag detection system to contact a hier-
archy of Universal Service Discovery and Description Inter-
face (UDDI) servers. These UDDI servers use the DNS-like
address to retrieve the Web server on which the virtual coun-
terpart is running as a regular Web Service. In the next step,
the tag detection system sets the new location of the tagged
object (i.e., the location determined by the tag reader) in its
virtual counterpart. The virtual counterpart uses this location
information to register itself with a hierarchy of location man-
agers. Since all virtual counterparts have to register them-

Figure 4. Infrastructure overview of the Web Service approach.

selves with this hierarchy, a virtual counterpart can ask the
hierarchy who its neighbors are.

In the following, each system component mentioned above
will be explained in more detail, with a focus on those issues
that are different from our Jini-based application framework
described in section 4.1.

Tagged object. The framework is designed to support vari-
ous tagging technologies. Up to now, however, we have only
implemented support for passive RFID technology. A tag
only needs to store a Universal Resource Identifier (URI),
which is used as a pointer to the virtual counterpart. As in
our other approach, we have made use of the RFID frame-
work [4]. Only a simple bridge had to be developed to couple
the RFID framework with our system.

Tag detection system. The tag detection system is the actual
component that bridges the gap between the physical world
and the digital world. On the one hand, the system commu-
nicates with the tag, which resides on a real-world object. On
the other hand, it also contacts the virtual counterpart of the
tagged object to report the new location of the tagged object.
A tag detection system is initialized with its physical or sym-
bolic location and uses this information as the new location
for all the tagged objects within its range. More sophisti-
cated tag detection systems may calculate the position of a
tagged object within the detection range more precisely (e.g.,
by measuring signal strength).

After a tagged object has entered the reading range of an
antenna, the tag detection system reads the tag’s memory,
which contains the URI of the virtual counterpart. In order
to set the new location of the tagged object in its virtual coun-
terpart, the tag detection system first has to contact the UDDI
hierarchy to resolve the URI. The UDDI hierarchy returns the
Web server on which the virtual counterpart resides. Using
this information, the tag detection system can set the new lo-
cation in the virtual counterpart.

UDDI hierarchy. Within the Web Services framework, the
UDDI defines how information about services can be stored
and retrieved. A UDDI server acts as a database for service
information, and implements the UDDI. The most important
information that a UDDI server stores is the service descrip-
tion and the location of the service. Web Service Description
Language (WSDL) is used to describe the service interface,
so that clients can access the service. A Web Service that is
up and running has to register itself on a UDDI server with its
Web server address, so that clients can locate the service.

Originally, the UDDI servers were intended to establish a
service cloud. This means that all UDDI servers belonging
to a service cloud have to store information about all services
worldwide, that is, a change on one UDDI server is propa-
gated to all others within the cloud. However, we believe this
will lead to scalability issues if a large number of objects are
tagged. We have therefore extended the UDDI service cloud
structure with a DNS-like partitioning that distributes all ser-
vice information across the UDDI servers without redundan-
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cies (with the exception of some backup servers for reliability
reasons).

The UDDI server generates a universal and unique iden-
tifier (UUID) if a service is registered for the first time. We
also use this UUID as the unique name for a virtual coun-
terpart. This UUID is a random number and has no struc-
ture. A structured identifier is necessary if we want to struc-
ture UDDI servers in a DNS-like style. We have therefore
introduced addresses for the UDDI servers, also in a DNS-
like style. The URI of a virtual counterpart consists of this
DNS-like address and the UUID (e.g., uri:pharma.foopharma:
40a96d21-ee00-0000-0080-e698e3243f5a). In this example
“pharma.foopharma” denotes the UDDI server on which the
virtual counterpart is registered. The DNS-like structure is
used to find the UDDI server within the UDDI hierarchy.
“40a96d21-ee00-0000-0080-e698e3243f5a” denotes the vir-
tual counterpart. It is unique for each tagged object and inde-
pendent of the UDDI server, allowing the virtual counterpart
to migrate within the UDDI hierarchy. Each tag detection sys-
tem possesses a UDDI client. This client uses the DNS-like
address to find the appropriate UDDI server to retrieve the
Web server on which the service (i.e., the virtual counterpart)
is running.

Virtual counterpart. As mentioned above, every virtual
counterpart is implemented as a Web Service that runs on a
Web server somewhere on the Internet. The interface of such
a virtual counterpart is different for different types of tagged
objects. A minimal set of functions is common to all virtual
counterparts and therefore supported by all counterpart imple-
mentations. Besides some auxiliary methods, a virtual coun-
terpart provides methods to set and get the current location
and retrieve the location history, as well as some methods for
adding and removing parent and child nodes depending on its
position in a composition tree (if this object is part of a com-
posite object). All other methods that are specific to a tagged
object have to extend this minimal interface.

Location manager. While the UDDI hierarchy tracks the
whereabouts of virtual counterparts, the location manager hi-
erarchy tracks the whereabouts of the tagged objects. Since
every virtual counterpart has to register itself with the ap-
propriate location manager for its tagged object, the location
manager is able to determine the neighbors of a tagged object.
Hence a virtual counterpart can ask the location manager for
all other virtual counterparts of tagged objects that are close
to its own tagged object.

Location information is modeled as coordinates. Besides
the geographic information, the location information also
contains hierarchically classified symbolic names. The lo-
cation managers are arranged in a tree structure. The root
location manager is responsible for the whole world. Child
nodes constitute a partition of their parent node. When a vir-
tual counterpart has to register itself with the root location
manager, the root location manager delegates this registration
to the node that covers the smallest space in which the tagged
object is contained.

Besides implementing the neighborhood concept, the lo-
cation manager also implements the containment concept.
When an object may contain other objects (such as a ware-
house that contains boxes of bottles), the location manager in
charge of the warehouse space maintains a link to the virtual
counterpart of the containing object.

5. Experiences with the frameworks

In this section we present our experiences with the two frame-
works based on Jini and Web Services. Firstly, we describe
the implementation of a complex application with both frame-
works. Secondly, we present a performance analysis of vari-
ous aspects of the two framework implementations. We con-
clude this section by discussing some of the design decisions.

5.1. Sample application

We used the prototype frameworks described in section 4 to
implement a number of applications. Here, we want to de-
scribe our experiences with the implementation of the Smart
Supply Chain mentioned earlier in the paper. We will first de-
scribe the implementation of this application using the Jini-
based framework. This will then be followed by a discussion
of the differences between that and an implementation using
the framework based on Web Services.

Jini approach. You will remember from section 2 that
our supply chain consists of bottlers, retail stores, whole-
salers, and freight companies. Each supply chain element
is equipped with one or more tag reading systems in order
to monitor in- and outgoing tagged goods (i.e., bottles and
boxes). Each such tag reading system is represented by a
virtual location (VL). Additionally, there is a software com-
ponent called the warehouse management system associated
with each supply chain element. This component is closely
linked to the VLs of the corresponding supply chain ele-
ment, implements most of the application logic, and provides
a graphical user interface to monitor and control various as-
pects of the supply chain.

Both the bottles and the boxes are individually tagged,
such that their presence can be detected by one of the tag
reading systems of the supply chain elements. Each bottle
and each box is represented by a separate virtual counterpart
(VC). Bottle VCs register for temperature events in order to
check that storage temperatures are complied with. If bottles
or boxes move along the supply chain, their VCs migrate to
the VLs of the corresponding supply chain element.

The warehouse management system provides the follow-
ing functionality (see also figure 5):

• It displays the VLs associated with the managed supply
chain element. For each VL, a list of associated VCs of
bottles and boxes is displayed. Additional detailed infor-
mation can be displayed for each VC and the physical ob-
ject associated with it.
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Figure 5. User interface of the warehouse management system.

• Both VLs and VCs can send status events (e.g., non-
compliant temperature detected, incorrect delivery), which
the management system subscribes to and displays.

• Orders can be sent to upstream elements in the supply
chain.

• Both VLs and VCs can be queried on their transit times
through the supply chain for statistical reporting purposes.

The last item in the above list is implemented using the
artifact memory (AM). Each VL and VC stores entry events,
exit events, and temperature events in the AM, and these can
subsequently be retrieved for statistical analysis. Addition-
ally, the AM is used to store the state information of the VCs
in order to support their migration.

Overall, the framework provided useful abstractions for
implementing this application in a structured way. Once the
developer is familiar with these abstractions, the development
effort is well below that for an implementation from scratch.
However, we also encountered a number of problems during
the development process, which we will now describe.

The implementation of a VC as a Jini service with its
own execution thread provides a good decoupling of indi-
vidual VCs, but suffers from a rather large resource require-
ment. Hence, overall resource consumption may be a prob-
lem where there are large quantities of goods (i.e., bottles and
boxes). We tried to reduce resource consumption by imple-
menting a box as a meta counterpart (VMC) that managed the
bottles contained in the box. However, this turned out to be
impossible due to the static mapping of tags to VMCs in the
framework, which precluded moving a bottle from one box to

another. This static mapping of tag IDs to counterparts also
complicates the introduction of new goods, since this requires
a new entry to be manually added to the mapping list.

The missing option of grouping VCs and VLs in a hierar-
chical way according to their location complicated the imple-
mentation of queries across sets of VCs (e.g., a query to ob-
tain the number of goods on all shelves of a wholesaler). Such
queries involved looking up all the affected counterparts and
issuing the query individually to each counterpart. A mecha-
nism to issue a query to a whole set of VCs as a single opera-
tion would be handy.

One further problem was caused by the implementation of
the event notification system, which resulted in a significant
programming overhead. Since the event arguments are imple-
mented as Java Objects, the programmer has to provide mar-
shalling code for them. Also, the receiver of an event has to
check event arguments for type conformity as well as having
to cast Java Objects to the expected argument types. Remote
method invocation systems such as Java RMI do a much bet-
ter job of supporting the programmer in this respect.

One potential problem relates to the lookup service, which
we used as a repository for all VCs. The use of a single ser-
vice instance might become a bottleneck if a large number of
counterparts were used.

Web Services approach. Most of the problems encountered
with the Jini-based framework can be resolved when using
the framework based on Web Services. As with the first ap-
proach, bottles and boxes are implemented as virtual coun-
terparts. However, the box is a composite counterpart that
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contains the counterparts of six bottles. Hence, all the bottles
located in a box can be manipulated by manipulating their
box. Also, the location hierarchy supports queries relating to
all counterparts at a specified location (e.g., a query to obtain
the quantity of goods on all the shelves of a wholesaler). Last
but not least, the UDDI hierarchy supports a more flexible
mapping of tag IDs to counterparts and removes the limita-
tions of a single repository as used in the Jini framework.

What remains unsolved also with this second implemen-
tation are the performance and resource consumption issues.
Each counterpart is implemented as a Web Service, which im-
plies a significant resource overhead. Additionally, method
invocation performance is rather poor, since this involves con-
structing and parsing complex SOAP messages. The follow-
ing section contains a more detailed analysis of these perfor-
mance overheads.

5.2. Performance

We conducted performance measurements for two concrete
platforms: Sun’s Jini implementation and Microsoft’s .NET
Web Services. The tests were performed on 451 MHz Intel
Pentium III PCs with 256 MB of RAM running Windows XP,
connected by a 100 Mbps Ethernet network. For the tests,
we used a simple application that implements counterparts as
described in section 4 using Jini and .NET, respectively. We
examined the memory footprint of the two runtime environ-
ments and the memory footprint of each virtual counterpart
in the test application. Additionally, we measured the amount
of time required to perform a counterpart lookup followed by
the invocation of a simple method on the counterpart. We
performed 20 runs and calculated averages.

The tests show that Jini currently performs much better
than .NET Web Services. The memory footprint of the Jini
runtime environment is 9564 kB, whereas the .NET runtime
consumes 17332 kB. Each additional virtual counterpart con-
sumes at least 1.84 kB with Jini, and at least 1640.97 kB with
the .NET implementation. Jini also performs better with re-
spect to the execution time of method invocations. One ser-
vice lookup and the invocation of a simple method take on
average 198.8 ms with a deviation of 7.2 ms for Jini. The
.NET Web Services needs 814.8 ms on average with a devia-
tion of 121.8 ms. Note that this refers to a best case scenario,
where the first UDDI server contains the registered service
and only a single simple method is called.

5.3. Discussion

The two frameworks differ with respect to some architectural
concepts. One difference is the usage of the tag ID. In the first
framework, the tag ID is used by several background entities,
whereas in the second framework, the tag is only used to es-
tablish the link between the physical world and the virtual
world. The latter allows infrastructure services to be decou-
pled by hiding low-level details. The frameworks also differ
in how they manage the addressing hierarchy, the structur-
ing hierarchy of tagged objects, and the location hierarchy.

The second framework makes these hierarchies and their un-
derlying models explicit, whereas the first framework does
not explicitly consider them, making it more difficult to use
the concepts in an application. Another difference is the sup-
port of migration and history – the first framework provides
dedicated entities that incorporate these concepts, whereas
the second framework does not possess such entities. Also,
the first framework introduces meta-counterparts and meta-
locations, but these do not figure in the second framework.
These concepts were intended to reduce resource consump-
tion and improve performance. However, during our exper-
iments it turned out that they are currently too inflexible to
be of practical use in many applications. The challenge now
consists of fixing these problems and combining the proven
concepts of both prototypes into an encompassing framework.
The experiments also revealed that current Web Service im-
plementations are rather inefficient – at least for the type of
applications we have in mind.

6. Related work

Several other trials exist that aim to provide support for appli-
cations based on smart objects. The work of the MIT Auto-
ID Center [15] comes closest to our intention of providing a
framework for smart objects. The goal of the Auto-ID center
and its sponsoring companies is to replace the traditional bar
code with passive RFID tags. For this, the whole spectrum of
components for such a solution, ranging from low-level pro-
tocols for the communication between tag and reader to an
XML-based language for exchanging information about prod-
ucts, is investigated. The middleware that controls the readers
and processes the tag IDs is called Savant [12]. The Savants
form a tree, with the edge Savants directly controlling the
RFID readers and storing the tags IDs, and the internal savants
aggregating the data received from their child nodes. Savants
also provide a means of notifying external programs of tag
information, and they run tasks that have to be registered with
a Savant. One aspect that is lacking in this approach is the
virtual counterpart that actively reacts to changes in the real-
world – Savants only manage passive database entries.

Cooltown [8] and the associated CoolBase infrastructure
aim to give people, places, and things a Web presence. This
Web presence has a similar function to that of our virtual
counterparts. The use of well-known Web technology is both
an advantage and a disadvantage. On the one hand, this tech-
nology is proven and widely available, but on the other hand
we think there is an important difference between Web ap-
plications and ubicomp applications. Due to its origin, the
Web is document-centric. Although it has been augmented
with ways of including dynamic distributed applications (e.g.,
SOAP), it still retains its inherent hypertext nature. On the
other hand, ubicomp applications are more akin to dynamic
distributed applications. The emerging XML-based Web in-
frastructure (i.e., Web Services) might support the needs of
tag-based ubicomp applications in the future. However, our
experience indicates that the performance of current Web Ser-
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vices implementations is not adequate to support such large-
scale applications.

The Stanford Interactive Workspaces project [6] aims
to provide a support infrastructure for interactive rooms
equipped with large displays and other wireless devices for
interaction. The main focus of the project, however, is to sup-
port user interaction and group work in augmented rooms.
The i-Land and Roomware [16] projects have a similar fo-
cus. Although these infrastructures provide good and useful
concepts for modeling and implementing ubiquitous comput-
ing applications, they focus mainly on HCI issues and how
to support users with many portable and stationary electronic
devices. In our systems, we focus on everyday items that do
not have any additional electronics except an almost invisible
tag. With such enhanced everyday items we want to enable
new ubiquitous computing applications – where the items do
not necessarily have to interact with users.

Projects such as Gaia [13], One.World [5], Microsoft Easy
Living [1], and CORTEX [17] aim to develop an infrastruc-
ture to support augmented environments in a fairly broad
sense. They provide basic abstractions and mechanisms for
coping with the dynamics and device heterogeneity of perva-
sive computing environments. On top of these mechanisms
they provide application models that are still rather generic.
There is quite a large gap between the abstractions provided
by these projects and frameworks such as our own, which
support a rather specific application model (that of multi-
object, tag-based applications in our case). Although those
infrastructures try to achieve different goals, some of their
underlying concepts and components are similar. Gaia, for
example, provides a concept called digital entity which is
similar to our virtual counterpart. Like many other systems,
Gaia also uses events as a basic communication abstraction.
However, Gaia is intended to support the rather broad appli-
cation domain of so-called active spaces. In contrast, our
frameworks are specifically tailored for tag-based applica-
tions. That is, our frameworks support a rather narrow ap-
plication domain, but provide a number of specialized mech-
anisms to substantially support the development of applica-
tions based on smart identification technology.

7. Conclusion and outlook

Based on our experiences with several prototype applications,
we came up with a set of basic functions and services, and
an application model for smart identification-based ubicomp
applications. We built two prototype frameworks based on
different underlying platforms to support the development of
such applications. Initial experience shows that application
development and maintenance can be significantly simplified
by using such application-level frameworks, which are tai-
lored to the specific needs of tag-based applications. In the
future we not only intend to support other tagging systems,
but also sensing devices giving rise to another class of inter-
esting applications.

Our two prototypical frameworks have covered various as-
pects, but only to a certain depth. In the future we want to

investigate some concepts in more detail in order to come up
with a single framework that is based on well-suited concepts
and also possesses the necessary level of performance.
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